Difference between revisions of "GPU/Shader Instruction Set"

From 3dbrew
< GPU
Jump to navigation Jump to search
(ffs smea :p)
(added JMPU/JMPC)
Line 188: Line 188:
 
|  IF?
 
|  IF?
 
|  If condition (don't know how condition flags work yet) is true, then executes instructions until DST, then jumps to DST+NUM; else, jumps to DST
 
|  If condition (don't know how condition flags work yet) is true, then executes instructions until DST, then jumps to DST+NUM; else, jumps to DST
 +
|-
 +
|  0x29
 +
|  3
 +
|  JMPU?
 +
|  Jumps to DST if BOOL is true, else does nothing.
 
|-
 
|-
 
|  0x2A
 
|  0x2A
Line 198: Line 203:
 
|  SETEMIT
 
|  SETEMIT
 
|  (geometry shader only) Sets VTXID and PRIMID for the next EMIT instruction. VTXID is the ID of the vertex about to be emitted within the primitive, while PRIMID is zero if we are just emitting a single vertex and non-zero if are emitting a vertex and primitive simultaneously. Note that the output vertex buffer (which holds 4 vertices) is '''not''' cleared when the primitive is emitted, meaning that vertices from the previous primitive can be reused for the current one. (this is still a working hypothesis and unconfirmed)
 
|  (geometry shader only) Sets VTXID and PRIMID for the next EMIT instruction. VTXID is the ID of the vertex about to be emitted within the primitive, while PRIMID is zero if we are just emitting a single vertex and non-zero if are emitting a vertex and primitive simultaneously. Note that the output vertex buffer (which holds 4 vertices) is '''not''' cleared when the primitive is emitted, meaning that vertices from the previous primitive can be reused for the current one. (this is still a working hypothesis and unconfirmed)
 +
|-
 +
|  0x2C
 +
|  2
 +
|  JMPC?
 +
|  Jumps to DST if condition (don't know how condition flags work yet) is true, else does nothing.
 
|-
 
|-
 
|  0x2E
 
|  0x2E

Revision as of 01:49, 16 November 2014


Overview

A compiled shader binary is comprised of two parts : the main instruction sequence and the operand descriptor table. These are both sent to the GPU around the same time but using separate GPU Commands. Instructions (such as format 1 instruction) may reference operand descriptors. When such is the case, the operand descriptor ID is the offset, in words, of the descriptor within the table. Both instructions and descriptors are coded in little endian. Basic implementations of the following specification can be found at [1] and [2] Please note that this page is being written as the instruction set is reverse engineered; as such it may very well contain mistakes.

Instruction formats

Format 1 : (used for register instructions)

Offset Size (bits) Description
0x0 0x7 Operand descriptor ID (DESC)
0x7 0x5 Source 2 register (SRC2)
0xC 0x7 Source 1 register (SRC1)
0x13 0x2 Flags (FLAG)
0x15 0x5 Destination register (DST)
0x1A 0x6 Opcode

Format 2 : (used for flow control instructions)

Offset Size (bits) Description
0x0 0x8 Number of instructions (NUM)
0xA 0xC Destination offset (in words) (DST)
0x1A 0x6 Opcode

Format 3 : (used for conditional flow control instructions)

Offset Size (bits) Description
0x0 0x8 Number of instructions ? (NUM)
0xA 0xC Destination offset (in words) (DST)
0x16 0x4 Uniform boolean ID (BOOL)
0x1A 0x6 Opcode

Format 4 : (used for SETEMIT)

Offset Size (bits) Description
0x16 0x2 Primitive ID (PRIMID)
0x18 0x2 Vertex ID (VTXID)
0x1A 0x6 Opcode

Instructions

Opcode Format Name Description
0x00 1 ADD Adds two vectors component by component; DST[i] = SRC1[i]+SRC2[i] for all i (modulo destination component masking)
0x01 1 DP3 Computes dot product on 3-component vectors; DST = SRC1.SRC2
0x02 1 DP4 Computes dot product on 4-component vectors; DST = SRC1.SRC2
0x08 1 MUL Multiplies two vectors component by component; DST[i] = SRC1[i].SRC2[i] for all i (modulo destination component masking)
0x0C 1 MAX Takes the max of two vectors, component by component; DST[i] = MAX(SRC1[i], SRC2[i]) for all i (modulo destination component masking)
0x0D 1 MIN Takes the min of two vectors, component by component; DST[i] = MIN(SRC1[i], SRC2[i]) for all i (modulo destination component masking)
0x0E 1 RCP Computes the reciprocal of the vector, component by component; DST[i] = 1/SRC1[i] for all i (modulo destination component masking)
0x0F 1 RSQ Computes the reciprocal of the square root of the vector, component by component; DST[i] = 1/sqrt(SRC1[i]) for all i (modulo destination component masking)
0x13 1 MOV Moves value from one register to another; DST = SRC1.
0x21 1 END2 ?
0x22 1 END1 ?
0x24 2 CALL Jumps to DST and executes instructions until it reaches DST+NUM instructions
0x26 3 CALLC Jumps to DST and executes instructions until it reaches DST+NUM instructions if BOOL is true
0x27 3 IFU If condition BOOL is true, then executes instructions until DST, then jumps to DST+NUM; else, jumps to DST.
0x28 2 IF? If condition (don't know how condition flags work yet) is true, then executes instructions until DST, then jumps to DST+NUM; else, jumps to DST
0x29 3 JMPU? Jumps to DST if BOOL is true, else does nothing.
0x2A 0 (no param) EMIT (geometry shader only) Emits a vertex (and primitive if PRIMID is non-zero). SETEMIT must be called before this.
0x2B 4 SETEMIT (geometry shader only) Sets VTXID and PRIMID for the next EMIT instruction. VTXID is the ID of the vertex about to be emitted within the primitive, while PRIMID is zero if we are just emitting a single vertex and non-zero if are emitting a vertex and primitive simultaneously. Note that the output vertex buffer (which holds 4 vertices) is not cleared when the primitive is emitted, meaning that vertices from the previous primitive can be reused for the current one. (this is still a working hypothesis and unconfirmed)
0x2C 2 JMPC? Jumps to DST if condition (don't know how condition flags work yet) is true, else does nothing.
0x2E 1 CMP1 Presumably compares two vectors component by component and sets the appropriate flags. (unknown exactly how this works as of yet)
0x2F 1 CMP2 Presumably compares two vectors component by component and sets the appropriate flags. (unknown exactly how this works as of yet)

Operand descriptors

Sizes below are in bits, not bytes.

Offset Size Description
0x0 0x4 Destination component mask. Bit 3 = x, 2 = y, 1 = z, 0 = w.
0x5 0x8 Source 1 component selector
0xE 0x8 Source 2 component selector
0x1F 0x1 Flag

Component selector :

Offset Size Description
0x0 0x2 Component 3 value
0x2 0x2 Component 2 value
0x4 0x2 Component 1 value
0x6 0x2 Component 0 value
Value Component
0x0 x
0x1 y
0x2 z
0x3 w

The component selector enables swizzling. For example, component selector 0x1B is equivalent to .xyzw, while 0x55 is equivalent to .yyyy.

Registers

It is not yet fully understood how registers are organized. It does however seem that registers are separated into various banks, some RO, some WO and some RW. Because of this separation, a given register ID may not refer to the same register value when it is used as SRC or as DST.

Attribute (input, RO) registers are located within the 0x0-0x10 range. What data they are fed is specified by the CPU. Output (WO) registers are also located within the 0x0-0x10 range. What data they are contain is specified by the CPU. Registers within the 0x20-0x40 ranges seem to be RW. They contain uniforms, such as matrix data.

SRC2 being only 5 bits long rather than 7 bits like its friend SRC1, it can only access v (input attribute) and r (temporary) registers.

Registers in the 0x88-0x97 range are uniform booleans.

It appears that writing twice to the same output register can cause problems, such as the GPU hanging.

DST mapping :

DST raw value Register name Description
0x0-0x7 o0-o7 Output registers.
0x10-0x1F r0-r15 Temporary registers.

SRC1 mapping :

SRC1 raw value Register name Description
0x0-0x7 v0-v7 Input attribute registers.
0x10-0x1F r0-r15 Temporary registers.
0x20-0x7F c0-c95 Vector uniform registers.

SRC2 mapping :

SRC2 raw value Register name Description
0x0-0x7 v0-v7 Input attribute registers.
0x10-0x1F r0-r15 Temporary registers.